- Un consorcio europeo integrado por cerca de un centenar de científicos trabaja en la aplicación de nanopartículas para conservar edificios históricos
- Se encuentra en la fase de evaluación de los diferentes productos aplicados en las catedrales de Vitoria (España), Pisa (Italia), Viena, Colonia (Alemania) y Gante (Bélgica)
- El consorcio ha testado 35 soluciones en 12 tipos de piedras para frenar el deterioro interno
Un consorcio europeo integrado por cerca de un centenar de científicos trabaja en la aplicación de nanopartículas para conservar edificios históricos tras diseñar diferentes soluciones adaptadas a cada tipo de piedra, al clima que soportan y los problemas que les afectan.
El uso de este tipo de partículas, que se han probado en catedrales de cinco países europeos y en el edificio de la Ópera de Oslo, construido en mármol, persigue reforzar de forma más eficaz su estructura de piedra, ya que pueden penetrar en las grietas más minúsculas y evitar así el deterioro interior de cada bloque.
El coordinador del proyecto Nano-Cathedral, Andrea Lazzeri, explicó las ventajas de este proyecto innovador, que arrancó en 2015 en colaboración con la Comisión Europea.
Ahora se encuentra en la fase de evaluación de los diferentes productos aplicados en las catedrales de Vitoria (España), Pisa (Italia), Viena, Colonia (Alemania) y Gante (Bélgica).
“La idea era aplicar esta nueva tecnología para restaurar los sillares de los edificios, fortaleciéndolos desde dentro”, expuso el científico, de tal forma que los huecos “vuelvan a juntarse y se consoliden” y, así, conservar la piedra original, ya que muchas veces “los poros y las grietas son tan pequeños que los productos tradicionales no logran penetrar en ellos”.
“El tamaño de las nanopartículas es mucho menor y pueden meterse mejor en estos huecos”, agregó el investigador, quien recordó que esas partículas “deben ser especiales para poder adherirse al sustrato y formar una estructura dentro de la piedra”, y además deben repeler la entrada del agua o la aparición de musgo u hongos sobre ellas.
Lazzeri apuntó a las “tensiones” que surgen en el interior de los bloques cuando una parte está expuesta al sol y la otra, en el interior, se enfrenta al frío, lo que provoca “huecos y grietas” por los que posteriormente se filtra el agua de la lluvia.
Al penetrar en el interior, “se queda retenida”, al igual que puede suceder con la humedad ambiental, y a temperaturas frías “el agua se congela, se expande y rompe la piedra”.
Además, la polución generada por los coches o las fábricas ha supuesto en los últimos 50 años un problema añadido para la conservación de las fachadas, sobre las que ha generado una “costra negra”.
Con las nanopartículas se aspira a blindar los poros ante estas situaciones, aunque cada tipo de material (mármol, arenisca o caliza) y el clima del entorno obliga a emplear una solución diferente, por lo que el consorcio ha testado 35 soluciones en 12 tipos de piedras para frenar el deterioro interno.
Los participantes del consorcio del proyecto Nano-Cathedral han creado una compañía con una “marca de mercado” que ofrezca protocolos de aplicación y evaluación.